Data Augmentation



Data Augmentation

- The technique of artificially expanding a dataset by
applying various transformations or modifications to the
existing data samples while preserving their labels or ground
truth information.

- This technique is widely used in machine learning and deep
learning to increase the diversity of training data, improve
the generalization ability of models, and enhance their
robustness against variations in input data.



1. Image Classification

« Augmenting images by applying transformations such as
flipping (K *F &), rotation (FE#&), scaling (#&1X), and
cropping (= t)])) to create additional training samples.

» This helps models learn to recognize objects from different
viewpoints, orientations, and scales.




2. Object Detection

« Augmenting images by introducing variations in object
positions (I &), sizes (K~F), and occlusions (#&1z).

- This enables object detection models to better handle
diverse scenarios and improve their ability to detect objects
accurately under different conditions.




3. Semantic Segmentation (;Z2& 7 &)

» Augmenting images by applying geometric transformations
(#&10%3%) and color variations (EEE%£1E) to generate more
annotated pixel-level segmentation masks.

« This assists semantic segmentation models in learning to
segment objects robustly across different scenes (a5 =)
and lighting conditions (BRBR1& ).



4. Natural Language Processing (NLP)

« Augmenting text data by mtroducmg variations in word
X

order (F20JE

5 5F), synonyms (EFE38), paraphrases(i &,

1A BRI F

BT —18)5E), and grammatical structures (5]

T E7H).

Ml

* This aids NL
representati
such as text

P models in learning more robust language
ons and improving their performance on tasks
classification, sentiment analysis, and machine

translation.




5. Speech Recognition

. Augmentlng audio data by adding bacquound noise (55 =&
&), varying pitch GAZEE ), speed (F8%%), and accent (L1 &).

* This helps speech recognition models become more resilient
to environmental noise and accent variations, resulting in
improved accuracy and robustness.




Survey paper | Open access | Published: 06 July 2019

A survey on Image Data Augmentation for Deep
Learning

Connor Shorten £ & Taghi M. Khoshgoftaar

Journal of Big Data 6, Article number: 60 (2019) | Cite this article

 Data warping (8321 1H): transform existing images such that their label is
preserved. (I EIHA)

 Oversampling: create synthetic instances and add them to the training set. (5 X

HTRY)

Reference: https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0



https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

A. Data Augmentations based on basic image manipulations

* Flipping

* Color space

* Cropping

* Rotation

* Translation

* Noise injection

* Color space transformations
* Kernel filters

* Mixing images

* Random erasing

Reference: https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0 9



https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

Translation

Shifting images left, right, up, or down can be a very useful transformation to avoid positional

bias in the data. For example, if all the images in a dataset are centered, which is common in

face recognition datasets, this would require the model to be tested on perfectly centered
images as well. As the original image is translated in a direction, the remaining space can be
filled with either a constant value such as 0 s or 255 s, or it can be filled with random or
Gaussian noise. This padding preserves the spatial dimensions of the image post-
augmentation.

Reference: https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0 10



https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

Color space transformations

Image data is encoded into 3 stacked matrices, each of size height x width. These matrices
represent pixel values for an individual RGB color value. Lighting biases are amongst the most
frequently occurring challenges to image recognition problems. Therefore, the effectiveness of
color space transformations, also known as photometric transformations, is fairly intuitive to
conceptualize. A quick fix to overly bright or dark images is to loop through the images and
decrease or increase the pixel values by a constant value. Another quick color space

manipulation is to splice out individual RGB color matrices. Another transformation consists

of restricting pixel values to a certain min or max value. The intrinsic representation of color in
digital images lends itself to many strategies of augmentation.

Color space transformations can also be derived from image-editing apps. An image’s pixel
values in each RGB color channel is aggregated to form a color histogram. This histogram can
be manipulated to apply filters that change the color space characteristics of an image.

There is a lot of freedom for creativity with color space augmentations. Altering the color
distribution of images can be a great solution to lighting challenges faced by testing data

(Figs. 3, 4).

Fig. 3

Contrast +20%  Hist.equalization  White balance Sharpen

Examples of Color Augmentations provided by Mikolajczyk and Grochowski [72] in the domain of
melanoma classification

Reference: https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

11


https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

v d

% d

“d

Original photo

Red color casting

Green color casting

Blue color casting

v

)

F

RGB all changed

Vignette

More vignette

Blue casting + vignette

Examples of color augmentations tested by Wu et al. [127]

Reference: https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

12


https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

Kernel filters (2K 85)

Fig. 6
original 2x2 ‘ 8x8  original

-
b
»
-

blurring images for Data Augmentation could lead to higher resistance to motion blur
during testing.

SRR P A B P T

Reference: https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

13


https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

Mixing images

ear ethods

Fig. 7 y
label A label A
A N, ™| (vanng
(256 x 256) augmentation (224 x 224) e, network
(224 x
mixing
label B label B
N
- averaging intensity of
image B basic dat_a patch B two patches for each
(256 x 256) augmentation ™ (224 x 224) pixel (RGB channels)

randomly picked
from training set

1) extracting a 224x224 patch from a random
position, 2) horizontal flipping randomly

Mixing images together by averaging their pixel values is a
very counterintuitive approach to Data Augmentation.

Reference: https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0 14



https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

Random erasing

Fig. 11

- - - |

Random Erasing

This technique was specifically designed to combat image
recognition challenges due to occlusion.

Reference: https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

15


https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

B. Data Augmentations based on Deep Learning

* Feature space augmentation

* Adversarial training

* GAN-based Data Augmentation

* Neural Style Transfer

* Meta learning Data Augmentations
* Neural augmentation

* Smart Augmentation

* AutoAugment

Reference: https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

16


https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0197-0

Transforming and augmenting iImages

Geometry

Resizing

v2.Resize(size[, interpolation, max_size, ...])

v2.5ScaleJitter(target_size[, scale_range, ...])

v2.RandomShortestSize(min_size[, max_size, ...])

v2.RandomResize(mMin_size, max_size[, ...])

Resize the input to the given size.

Perform Large Scale Jitter on the input according to “Simple
Copy-Paste is a Strong Data Augmentation Method for
Instance Segmentation”,

Randomly resize the input.

Randomly resize the input.

https://pytorch.org/vision/stable/transforms.html

17


https://pytorch.org/vision/stable/transforms.html

Color &

v2.

v2.

v2

v2.

v2.

v2.

v2.

https://pytorch.org/vision/stable/transforms.html

Coloriitter([brightness, contrast, ...])

RandomChannelPermutat iono

.RandomPhotometricDistort([brightness, ..])

Grayscale([num_output_channels])

rGB(Q

RandomGrayscale([PD

Gaussianslur(kernel_size[, sigma])

Randomly change the brightness, contrast, saturation and
hue of an image or video.

Randomly permute the channels of an image or video

Randomly distorts the image or video as used in SSD: Single
Shot MultiBox Detector.

Convert images or videos to grayscale.

Convert images or videos to RGB (if they are already not
RGB).

Randomly convert image or videos to grayscale with a
probability of p (default 0.1).

Blurs image with randomly chosen Gaussian blur kernel.

18


https://pytorch.org/vision/stable/transforms.html

Auto-Augmentation

AutoAugment is a common Data Augmentation technique that can improve the accuracy of Image Classification models. Though
the data augmentation policies are directly linked to their trained dataset, empirical studies show that ImageNet policies provide
significant improvements when applied to other datasets. In TorchVision we implemented 3 policies learned on the following
datasets: ImageNet, CIFAR10 and SVHN. The new transform can be used standalone or mixed-and-matched with existing

transforms:

v2. Autoaugment([policy, interpolation, fill])

v2.RandAugment([num_ops, magnitude, ...])

v2.TrivialAugmentwide([num_magnitude_bins, ...])

v2. augmix([severity, mixture_width, ...])

AutoAugment data augmentation method based on
"AutoAugment: Learning Augmentation Strategies from
Data”.

RandAugment data augmentation method based on
"RandAugment: Practical automated data augmentation with
a reduced search space”.

Dataset-independent data-augmentation with
TrivialAugment Wide, as described in “TrivialAugment:
Tuning-free Yet State-of-the-Art Data Augmentation”.

AugMix data augmentation method based on "AugMix: A
Simple Data Processing Method to Improve Robustness and
Uncertainty”.

19



import torchvision.transforms as transforms

# Image flipping
flip transform = transforms.RandomHorizontalFlip(p=0.5) # Horizontal flip with a probability of 0.5

# Rotation

rotation_ transform = transforms.RandomRotation (degrees=30) # Random rotation within *30 degrees

# Scaling

scale_transform = transforms.RandomResizedCrop (size=(224, 224), scale=(0.8, 1.0))

# Translation

translate transform = transforms.RandomAffine (degrees=0, translate=(0.2, 0.2)) # Translation within +0.2
times image width and height

# Brightness adjustment

brightness transform = transforms.ColorJitter (brightness=0.2) # Adjust brightness within 0.2 times

# Contrast adjustment

contrast transform = transforms.ColorJitter(contrast=0.2) # Adjust contrast within 0.2 times

# Noise injection
noise_transform = transforms.Compose ([
transforms.ToTensor (),

transforms.Lambda (lambda x: x + 0.1 * torch.randn like(x)) # Add Gaussian noise with a standard
deviation of 0.1 -

1) 20



