# Transfer Learning

Part 2

| Table of all available classification weights |  |
|-----------------------------------------------|--|
|-----------------------------------------------|--|

Correct answer is within the top five highest-scoring categories predicted by the model.

|                                                            | by the | mouci.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 2               |        |
|------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|--------|
| Table of all available classification weights              |        | ter and the second seco | 5         | perof trainable |        |
| Accuracies are reported on ImageNet-1K using single crops: |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total nu. | Jel J           |        |
| Weight                                                     | Acc@1  | Acc@5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Params    | GFLOPS          | Recipe |
| AlexNet_Weights.IMAGENET1K_V1                              | 56.522 | 79.066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61.1M     | 0.71            | link   |
| ConvNeXt_Base_Weights.IMAGENET1K_V1                        | 84.062 | 96.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88.6M     | 15.36           | link   |
| ConvNeXt_Large_Weights.IMAGENET1K_V1                       | 84.414 | 96.976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 197.8M    | 34.36           | link   |
| ConvNeXt_Small_Weights.IMAGENET1K_V1                       | 83.616 | 96.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.2M     | 8.68            | link   |
| ConvNeXt_Tiny_Weights.IMAGENET1K_V1                        | 82.52  | 96.146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.6M     | 4.46            | link   |
| DenseNet121_Weights.IMAGENET1K_V1                          | 74.434 | 91.972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.0M      | 2.83            | link   |
| DenseNet161_Weights.IMAGENET1K_V1                          | 77.138 | 93.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.7M     | 7.73            | link   |
| DenseNet169_Weights.IMAGENET1K_V1                          | 75.6   | 92.806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.1M     | 3.36            | link   |
| DenseNet201 Weights.IMAGENET1K V1                          | 76.896 | 93.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.0M     | 4.29            | link   |

GFLOPS: Number of floating-point operations required for the model to perform one forward inference.

Recipe: The specific training process or settings used to achieve these performance metrics 2

https://pytorch.org/vision/stable/models.html

### Image downloader



# Confusion Matrix (誤差矩陣、混淆矩陣)

- Confusion Matrix (error matrix), is a tool widely used in machine learning to <u>evaluate the performance of</u> <u>classification models</u>.
- It presents the relationship between the model's predictions and the actual labels in a matrix format.
- The confusion matrix is typically divided into four quadrants:
  - True Positive (TP)
  - True Negative (TN)
  - False Positive (FP)
  - False Negative (FN).

|        |          | Positive | Negative |
|--------|----------|----------|----------|
| Actual | Positive | ТР       | FN       |
| class  | Negative | FP       | TN       |

Predicted class

https://en.m.wikipedia.org/wiki/File:Binary confusion matrix.jpg

# Confusion Matrix (誤差矩陣、混淆矩陣)



# Confusion Matrix (誤差矩陣、混淆矩陣)

| 1 import numpy as np                                                           |                                |      |        |        |       |       |        |         |       |    |    |     |       |
|--------------------------------------------------------------------------------|--------------------------------|------|--------|--------|-------|-------|--------|---------|-------|----|----|-----|-------|
| 2 import matplotlib.pyplot as plt                                              |                                |      |        |        |       |       |        |         |       |    |    |     |       |
| 3                                                                              |                                |      |        |        |       | Con   | fusio  | n Ma    | atrix |    |    |     |       |
| 4                                                                              |                                |      |        |        |       | 10000 |        | 1.7.2.1 |       |    |    |     | - 100 |
| 5 [10, 90, 10, 0, 0, 0, 0, 0, 0],                                              |                                |      | 0 - 10 | 00 10  | 5     | 0     | 0      | 0       | 0     | 0  | 0  | 0   |       |
| 6 [5, 10, 85, 0, 0, 0, 0, 0, 0],                                               |                                |      |        |        | 10    |       | ~      | ~       | ~     | ~  | ~  | ~   |       |
| 7 [0, 0, 0, 100, 10, 5, 0, 0, 0],                                              |                                |      | 111    | 90     | 10    | U     | 0      | 0       | 0     | 0  | 0  | 0   | 80    |
| 8 [0, 0, 0, 10, 90, 10, 0, 0, 0],                                              |                                |      | 2      | 5 10   | 85    | 0     | 0      | 0       | 0     | 0  | 0  | 0   | - 80  |
| 9 [0, 0, 0, 5, 10, 85, 0, 0, 0],                                               |                                |      | - 1    | , 10   | 05    | Ľ.    |        | Ŭ       | Ŭ     | Ŭ  | Ĭ  | - × |       |
| 10 [0, 0, 0, 0, 0, 0, 100, 10, 5, 0],                                          |                                |      | 3 - (  | 0 0    | 0     | 100   | 10     | 5       | 0     | 0  | 0  | 0   |       |
| 11 [0, 0, 0, 0, 0, 0, 10, 90, 10, 0],                                          |                                | _    | -      |        |       | _     |        |         |       |    |    |     | - 60  |
| 12 [0, 0, 0, 0, 0, 0, 5, 10, 85, 0],                                           |                                | be   | 4 - (  | 0 0    | 0     | 10    | 90     | 10      | 0     | 0  | 0  | 0   |       |
| 13 [0, 0, 0, 0, 0, 0, 0, 0, 0, 100]])                                          |                                | La   |        |        |       |       |        |         |       |    |    |     |       |
| 14                                                                             |                                | rue  | 5 - (  | 0 0    | 0     | 5     | 10     | 85      | 0     | 0  | 0  | 0   |       |
| 15 plt.imshow(confusion_matrix, interpolation='nearest', cmap=plt.cm.summe     | ~)                             | -    |        |        |       |       |        |         |       |    |    |     | - 40  |
| 16 plt.title('Confusion Matrix')                                               |                                |      | 6 - (  | 0 0    | 0     | 0     | 0      | 0       | 100   | 10 | 5  | 0   |       |
| 17 plt.colorbar()                                                              |                                |      | _      |        |       | ~     | ~      | ~       | 10    | 00 | 10 | ~   |       |
| 18                                                                             |                                |      | 11     | 0 0    | 0     | 0     | 0      | 0       | 10    | 90 | 10 | 0   | 2.0   |
| 19 tick_marks = np.arange(10)                                                  |                                |      | 。      | n 0    | 0     | 0     | 0      | 0       | 5     | 10 | 85 | 0   | - 20  |
| 20 plt.xticks(tick_marks, tick_marks)                                          |                                |      | °]     |        | Ŭ     | Ŭ     | Ŭ      | Ŭ       | Ĩ     | 10 | 05 | Ŭ   |       |
| 21 plt.yticks(tick_marks, tick_marks)                                          |                                |      | 9-1    | 0 0    | 0     | 0     | 0      | 0       | 0     | 0  | 0  | 100 |       |
| 22                                                                             |                                |      |        |        |       |       |        |         |       |    |    |     | - 0   |
| 23 plt.ylabel('True Label')                                                    |                                |      | (      | 0 1    | 2     | 3     | 4      | 5       | 6     | 7  | 8  | 9   |       |
| 24 plt.xlabel('Predicted Label')                                               |                                |      |        |        |       | Pr    | edicte | ed Lal  | bel   |    |    |     |       |
| 25                                                                             |                                |      |        |        |       |       |        |         |       |    |    |     |       |
| 26                                                                             |                                |      |        |        |       |       |        |         |       |    |    |     |       |
| 27 for i in range(10):                                                         |                                |      |        |        |       |       |        |         |       |    |    |     |       |
| 28 for j in range(10):                                                         |                                |      |        |        |       |       |        |         |       |    |    |     |       |
| <pre>29 plt.text(j, i, str(confusion_matrix[i, j]), horizontalalignment:</pre> | =' <mark>center'</mark> , vert | ical | alig.  | Inment | t='ce | nter  | ')     |         |       |    |    |     |       |
| 30                                                                             |                                |      |        |        |       |       |        |         |       |    |    |     |       |
| 31 plt.show()                                                                  |                                |      |        |        |       |       |        |         |       |    |    |     |       |

### One-vs-all matrix



### Predicted class

## Actual class



### Predicted class Positive Negative Positive FN TP Actual class Negative FP TN

### Cat

### Predicted class

| Accuracy =                   | $\frac{TP + TN}{TP + TN + FP + FN}$ |
|------------------------------|-------------------------------------|
| $\operatorname{Precision} =$ | $rac{tp}{tp+fp}$                   |

$$ext{Recall} = rac{tp}{tp+fn}$$

 $\textit{F1 score} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$ 

7

### Exercise:

Continuing from the previous assignment, collect at least 200 images for each category:

1. Design a program to compare the prediction results.

Select one model and use different weights (at least 4 weights) to compare the prediction results.

3. Choose 6 models (one weight for each model), and <u>introduce</u> your chosen models with graphics/tables and text, <u>comparing</u> the prediction results.

PS. At least 8 pages of A4 paper, font size 12, Arial font, line spacing 1.5.

DenseNet121\_Weights.IMAGENET1K\_V1 DenseNet161\_Weights.IMAGENET1K\_V1 DenseNet169\_Weights.IMAGENET1K\_V1 DenseNet201\_Weights.IMAGENET1K\_V1

MobileNet\_V2\_Weights.IMAGENET1K\_V1 MobileNet\_V2\_Weights.IMAGENET1K\_V2 MobileNet\_V3\_Large\_Weights.IMAGENET1K\_V1 MobileNet\_V3\_Large\_Weights.IMAGENET1K\_V2 MobileNet\_V3\_Small\_Weights.IMAGENET1K\_V1

### Exercise:

- Submission requirements:
- 1. source code(s)
- 2. PDF document
- 3. Upload to e-learning before 5/3 14:10