
Transfer Learning

1



Transfer learning

2

• Transfer learning is a machine learning technique that allows a model 
trained on one task to be repurposed for a new, related task.

• The key advantage of transfer learning is its ability to leverage existing 
knowledge, reducing the amount of data and computational 
resources required to train a model from scratch on the new task.

• This makes transfer learning particularly useful in scenarios where 
data is scarce or when training a brand-new model is prohibitively 
expensive.



Involves two steps:

3

1.Pre-training phase: In this phase, the model is trained on a large 
dataset known as the source task. This task is related, to some extent, 
to the target task (the new task) but is not exactly the same. The 
purpose of this step is to allow the model to learn some generalizable 
features or patterns.

2.Fine-tuning phase: After pre-training, the model is fine-tuned on the 
target task's dataset. This step often includes modifying parts of the 
model (such as the output layer) to fit the specific requirements of 
the new task and performing a limited number of training iterations 
on the new dataset to refine the model parameters.



Widely applicable across various fields:

4

Transfer learning is widely applicable across various fields, including but 
not limited to natural language processing, computer vision, and 
speech recognition.

• In natural language processing, a model pre-trained on a large corpus of text 
can be fine-tuned for specific tasks such as sentiment analysis (情感分析) or 
question answering (Q/A).

• In computer vision, a model trained on a broad set of image data can be fine-
tuned for specific image recognition tasks, such as facial recognition (臉部辨
識) or object classification (物品分類).



TorchVision

5

• TorchVision is an accompanying package for PyTorch, specifically 
designed for the computer vision domain.

• It provides a range of tools and pre-trained models to help 
researchers and developers achieve quick results in tasks like image 
classification, object detection, image transformations, and other 
visual tasks.

https://pytorch.org/vision/stable/datasets.html#built-in-datasets

https://pytorch.org/vision/stable/datasets.html#built-in-datasets


The main features of TorchVision can be categorized into 
several parts:

6

1. Datasets: TorchVision offers a collection of common datasets such as ImageNet, CIFAR10, 

MNIST, etc., making it convenient for users to train and test models.

2. Models: It includes a series of pre-trained models like VGG, ResNet, Inception, etc. These 

models can be used directly for inference or as pre-trained models for further training.

3. Transforms: TorchVision provides various methods for image transformation, such as scaling, 

cropping, rotating, and color transformation, which helps in data augmentation and 

preprocessing.

4. Utils: This includes tools for image reading and saving, as well as tools that make it easier to 

export models to other platforms.



7



The following classification models are available, with or 
without pre-trained weights:

8

•MNASNet
•MobileNet V2
•MobileNet V3
•RegNet
•ResNet
•ResNeXt
•ShuffleNet V2
•SqueezeNet
•SwinTransformer
•VGG
•VisionTransformer
•Wide ResNet

•AlexNet

•ConvNeXt

•DenseNet

•EfficientNet

•EfficientNetV2

•GoogLeNet

•Inception V3

•MaxVit

https://pytorch.org/vision/stable/models.html

https://pytorch.org/vision/stable/models/mnasnet.html
https://pytorch.org/vision/stable/models/mobilenetv2.html
https://pytorch.org/vision/stable/models/mobilenetv3.html
https://pytorch.org/vision/stable/models/regnet.html
https://pytorch.org/vision/stable/models/resnet.html
https://pytorch.org/vision/stable/models/resnext.html
https://pytorch.org/vision/stable/models/shufflenetv2.html
https://pytorch.org/vision/stable/models/squeezenet.html
https://pytorch.org/vision/stable/models/swin_transformer.html
https://pytorch.org/vision/stable/models/vgg.html
https://pytorch.org/vision/stable/models/vision_transformer.html
https://pytorch.org/vision/stable/models/wide_resnet.html
https://pytorch.org/vision/stable/models/alexnet.html
https://pytorch.org/vision/stable/models/convnext.html
https://pytorch.org/vision/stable/models/densenet.html
https://pytorch.org/vision/stable/models/efficientnet.html
https://pytorch.org/vision/stable/models/efficientnetv2.html
https://pytorch.org/vision/stable/models/googlenet.html
https://pytorch.org/vision/stable/models/inception.html
https://pytorch.org/vision/stable/models/maxvit.html
https://pytorch.org/vision/stable/models.html


9
https://pytorch.org/vision/stable/models.html

https://pytorch.org/vision/stable/models.html


10
https://pytorch.org/vision/stable/models.html

Correct answer is within the top five highest-scoring categories predicted 
by the model.

GFLOPS: Number of floating-point operations required for the model to perform 
one forward inference.

Recipe: The specific training process or settings used to achieve these 
performance metrics

https://pytorch.org/vision/stable/models.html


11https://www.image-net.org

https://www.image-net.org/


imagenet_classes.csv

12

https://huggingface.co/datasets/imagenet-1k

https://github.com/Alibaba-MIIL/ImageNet21K

https://huggingface.co/datasets/imagenet-1k
https://github.com/Alibaba-MIIL/ImageNet21K


Example:

ResNet18_Weights

13



Example:

14https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html

import torchvision.models as models

from torchvision.models.resnet import ResNet18_Weights

resnet=models.resnet18(weights='ResNet18_Weights.DEFAULT')

https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html


15



16



17

Evaluation mode:

•Disables Dropout: In evaluation mode, all the dropout layers in the model 
are deactivated. Dropout layers randomly drop out (set to zero) a fraction of 
input units during training to prevent overfitting. However, during inference, 
you want to use the full capacity of the model without randomly dropping out 
nodes, so dropout is turned off.

•Freezes Batch Normalization Layers: Batch normalization layers normalize 
the input or the activations of the previous layer to have zero mean and unit 
variance. This is done differently during training and inference. During 
training, batch statistics (mean and variance of the current batch) are used for 
normalization, and these statistics are also updated to compute running 
estimates that are used during inference. In evaluation mode, these running 
estimates are used instead of batch statistics to ensure consistency in the 
outputs, as the model is no longer being updated.

把 BatchNormalization固定、停用Dropout，用訓練好的值



ImageFolder

18



ImageFolder

19

ImageFolder is a class in PyTorch's torchvision.datasets module 
for handling image datasets that are stored in a directory structure with 
each folder named after the class it represents.

Inside each folder are the images that belong to that class.

ImageFolder automatically maps this folder structure to a dataset 
with labels, making it ideal for training classification models.



20



ex09_bee.ipynb
21

Exercise:



22



23



24



25



Decays the learning rate of each parameter group by gamma every 
step_size epochs.

26

StepLR() decreases the learning rate by a factor after a specified 
number of epochs.

Create an instance of StepLR() and pass it the optimizer and the 
step size, among other parameters.

Call scheduler.step() after each epoch.

Assuming the original learning rate is set to 0.001,
during training, the learning rate will change by a factor of 0.1 every 7 epochs.
After 7 epochs, the learning rate becomes 0.0001,
and after another 7 epochs, the learning rate becomes 0.00001.

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.StepLR.html


Exercise:

Submission requirements: 

1. source code transferlearning.py

2. PDF documents
1. Explaining the steps.

1. Image collecting.

2. Image processing.

3. Build/test the model. 

2. Show the outputs. 

3. Upload to e-learning before 4/26 14:10

https://www.akc.org/dog-breeds/

Create a breed identifier, choose an animal, collect 
images, adjust the network, so that the identifier can 
distinguish between different breeds (at least 8 breeds).

https://www.akc.org/dog-breeds/


28



29


