
Convolutional
Neuron Network

1

2

MNIST dataset

MNIST stands for Modified National Institute of Standards and
Technology and is often used as a benchmark in machine
learning research.

The MNIST dataset consists of a large collection of handwritten
digits, commonly used for training various machine learning
algorithms. Each image in the dataset is a grayscale image of
size 28x28 pixels, representing a single digit from 0 to 9. MNIST
is a popular benchmark dataset in the field of machine learning
and computer vision.

It consists of 60,000 training images and 10,000 testing images.

http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

28格
2

8
格

3

4

.

.

.
0
0
0
0

0.4
0.4
0.3
0.5
0.2

.

.

.

Flatten
28x28 = 784 features

Flatten

5

Convolution

6

卷積（Convolution）是一種數學運算，用於從輸入數據中提取特徵。卷積通常涉及將一個稱為卷積核或濾波器的小矩
陣應用於輸入數據的不同區域，然後將它們的乘積總和起來以產生輸出特徵圖。

Convolution in the context of neural networks refers to the mathematical operation of
combining two functions to produce a third function that represents how one function
modifies the shape of the other. In the context of Convolutional Neural Networks (CNNs),
convolution involves applying a filter (also known as a kernel) to an input image or feature
map to extract various features.

1 2 3 1 1

4 5 6 1 1

7 8 9 2 3

1 1 1 1 1

1 2 1 0 1

1 3 4 2 1

1 1 3 4 4

……

…
…

28x28

0 1 0

1 1 1

0 1 0

convolutional
kernel

25

1x0 + 2x1 + 3x0
4x1 + 5x1 + 6x1
7x0 + 8x1 + 9x0
= 25

7

Feature map

Types of Convolutional kernels
1. Edge detectors/邊緣檢測器: Used for detecting edges and contours in images. Common edge detectors include

Sobel, Prewitt, and Scharr kernels.

2. Blur kernels/模糊核: Also known as smoothing kernels, used to reduce noise and details in images to achieve a

blurred effect. Common blur kernels include Gaussian and mean kernels.

3. Sharpening kernels/增強核: Used to enhance edges and details in images to improve sharpness. Sharpening

kernels are typically a sharpened version to make details in the image more prominent.

4. Depthwise convolution kernels/深度卷積核: Used in depthwise separable convolutions to independently process

each input channel, reducing computational cost and improving efficiency.

5. Pooling kernels/分類核: Typically used in conjunction with convolutional kernels for reducing the size of the input

feature maps, thereby reducing computational cost and increasing translation invariance.

6. Transpose convolution kernels/轉置卷積核: Also known as deconvolution kernels, used for upsampling operations

to increase the size of feature maps.

8

Edge detectors/邊緣檢測器

9

import cv2

import numpy as np

讀取圖像
image = cv2.imread('input_image.jpg', cv2.IMREAD_GRAYSCALE)

檢測邊緣
sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=3)

sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=3)

組合X和Y方向的邊緣檢測結果
sobel_combined = cv2.addWeighted(sobel_x, 0.5, sobel_y, 0.5, 0)

顯示結果
cv2.imshow('Original Image', image)

cv2.imshow('Sobel X', sobel_x)

cv2.imshow('Sobel Y', sobel_y)

cv2.imshow('Sobel Combined', sobel_combined)

cv2.waitKey(0)

cv2.destroyAllWindows()

pip install opencv-python

Blur kernels/模糊核

10

import cv2

讀取圖像
image = cv2.imread('input_image.jpg')

定義模糊核大小
kernel_size = (5, 5) # 這裡使用一個5x5的模糊核

應用均值模糊
blurred_image = cv2.blur(image, kernel_size)

顯示原始圖像和模糊後的圖像
cv2.imshow('Original Image', image)

cv2.imshow('Blurred Image', blurred_image)

cv2.waitKey(0)

cv2.destroyAllWindows()

Sharpening kernels/增強核

11

import cv2

import numpy as np

def sharpening_kernel(image, kernel_size=(3, 3), strength=1.0):

Define the sharpening kernel

kernel = np.array([[-1, -1, -1],

[-1, 9, -1],

[-1, -1, -1]]) * strength

Apply the kernel to the image

sharpened_image = cv2.filter2D(image, -1, kernel)

return sharpened_image

Load an example image

image = cv2.imread('example_image.jpg')

Convert the image to grayscale

gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Apply sharpening kernel to the grayscale image

sharpened_image = sharpening_kernel(gray_image, strength=1.5)

Display the original and sharpened images

cv2.imshow('Original Image', gray_image)

cv2.imshow('Sharpened Image', sharpened_image)

cv2.waitKey(0)

cv2.destroyAllWindows()

Depthwise convolution kernels/深度卷積核

12

import torch

import torch.nn as nn

import torch.nn.functional as F

from torchvision import transforms

from PIL import Image

import matplotlib.pyplot as plt

讀入圖像
image = Image.open("example_image.jpg")

轉換圖像為 PyTorch tensor 格式
preprocess = transforms.Compose([

transforms.ToTensor(),

])

image_tensor = preprocess(image).unsqueeze(0)

定義深度卷積模型
class DepthwiseConvModel(nn.Module):

def __init__(self):

super(DepthwiseConvModel, self).__init__()

使用深度卷積進行特徵提取
self.depthwise_conv = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3,

groups=3, padding=1)

def forward(self, x):

x = self.depthwise_conv(x)

return x

初始化模型
model = DepthwiseConvModel()

執行深度卷積
with torch.no_grad():

output = model(image_tensor)

將輸出轉換回圖像格式
output_image = transforms.ToPILImage()(output.squeeze(0))

顯示原始圖像和深度卷積後的圖像
plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)

plt.title('Original Image')

plt.imshow(image)

plt.axis('off')

plt.subplot(1, 2, 2)

plt.title('Depthwise Convolution Output')

plt.imshow(output_image)

plt.axis('off')

plt.show()

Pooling kernels/分類核

13

import torch

import torch.nn as nn

import torchvision.transforms as transforms

from PIL import Image

讀入圖像
image = Image.open("example_image.jpg")

轉換圖像為PyTorch Tensor
transform = transforms.Compose([

transforms.Resize((224, 224)), # 將圖像大小調整為模型的輸入尺寸
transforms.ToTensor() # 將圖像轉換為Tensor
])

image = transform(image).unsqueeze(0) # 添加一個batch維度

定義池化層
pooling_layer = nn.MaxPool2d(kernel_size=2, stride=2)

執行池化操作
output = pooling_layer(image)

輸出池化後的圖像尺寸
print("輸入圖像尺寸:", image.shape)

print("池化後的圖像尺寸:", output.shape)

The size of Feature map

14

ConV

4 x 4 x 1

2 x 2 x 1
3 x 3 x 1

Feature map
Input

Convolutional
kernel

Padding

15

ConV

4 x 4 x 1

2 x 2 x 1
3 x 3 x 1

ConV

5 x 5 x 1

2 x 2 x 1
4 x 4 x 1

0 0 0 0 0 0

0 1 2 3 4 0

0 2 0 1 1 0

0 3 2 0 2 0

0 4 0 1 4 0

0 0 0 0 0 0

Feature map
Input

Convolutional
kernel

The same size

Stride
• The "stride" in CNN, or Convolutional Neural Network, refers to the number of pixels by which the

filter/kernel is slid over the input image. It determines how much the filter moves between each application
of the filter to the input volume. In simpler terms, it controls the step size of the filter as it moves across the
input image.

• A larger stride value means the filter skips more pixels as it moves, resulting in a smaller output volume
spatially. Conversely, a smaller stride value means the filter moves more slowly, resulting in a larger output
volume spatially.

16

Figure from:
https://developersbreach.com/convolution-neural-network-deep-learning/

Stride 是指在應用卷積核 (convolutional kernel) 進行過濾時，在輸入
資料上移動的步長。這個步長可以控制著卷積操作過程中，卷積核
滑動的間距。當 Stride 越大時，輸出特徵圖 (output feature map) 的
尺寸會越小；反之，當 Stride 越小，輸出特徵圖的尺寸會越大。
Stride 用於控制著特徵提取的密度和輸出尺寸的調整。

https://developersbreach.com/convolution-neural-network-deep-learning/

Pooling

17

Figure from:
https://developersbreach.com/convolution-neural-network-deep-learning/

Pooling in a Convolutional Neural Network (CNN) is a technique used to reduce the spatial dimensions (width and
height) of the input volume while retaining the most important information. It helps in controlling overfitting and
reducing computational complexity.

There are different types of pooling layers, such as max pooling and average pooling.

Input

https://developersbreach.com/convolution-neural-network-deep-learning/

Size of feature map

18

32 x 32 x 1 2 x 2 x 1
h = (32-2+2)/2 + 1 = 17
w = (32-2+2)/2 + 1 = 17

28x28

ConV2d
(28x28 16 feature maps)

MaxPooling
(14x14 16 feature maps)

reshape to 1D
(7x7x36 = 1764)

1 2 3 4 1763 1764……

1 2 3 4 127 128…… hidden layer 128

output 101 2 3 4 9 10…… 19

ConV2d
(14x14 36 feature maps)

MaxPooling
(7x7 16 feature maps)

Output Layer

Fully Connected Layers: The flattened feature vector is then
passed through one or more FC layers. Each neuron in these
layers is connected to every neuron in the previous and
subsequent layers. The FC layers perform non-linear
transformations on the input data, allowing the network to
learn complex patterns and relationships.

Flattening: Before passing the output of the convolutional
and pooling layers to the FC layers, the feature maps are
flattened into a one-dimensional vector. This flattening
operation converts the spatial information into a linear
representation.

20

Add one Convolutional layer
Activation function: relu

Convolutional layer

Pooling

21

Pooling

22

Fully Connected Layer

23

Dropout
• Dropout is a regularization technique used during

training to prevent overfitting.

• Dropout randomly sets a fraction of input units
to zero during each update pass. This means that
the information flow is temporarily removed
from some neurons, forcing the network to learn
more robust features.

24

drop 40% neurons

BatchNorm/批次標準化
• Batch Normalization (BatchNorm) is a technique used to normalize the inputs of

each layer.

• Batch Normalization normalizes the inputs of each mini-batch, aiming to make
the mean of the inputs close to zero and the standard deviation close to one.

• This helps prevent some input data from being too large or too small, thereby
alleviating the problem of gradient vanishing and making neural networks easier
to train.

25

BatchNorm/批次標準化

26

Multiple channels of feature maps are typically generated, with each
channel corresponding to different features.
When applying Batch Normalization, the input of each channel is
normalized independently.

18 feature maps ➔ 18 channels of BatchNorm

Exercise: MNIST

1. Create a MNIST prediction model without convolutional
computation and compare it with the CNN version.

2. Improve the accuracy of the CNN version

Submission requirements:

1. source code (MNIST_noCNN.py, MNIST_CNN.py) of (1) & (2)

2. PDF documents
Explaining your strategy of (2).

Show the outputs

3. Upload to e-learning before 4/12 14:10

