
Neuron Network

1

Activate functions
• Sigmoid Function (Logistic Function):

• It compresses the input to the range between 0 and 1, commonly
used in binary classification tasks, although less prevalent in deep
neural networks due to the vanishing gradient problem.

2

Sigmoid

3

-3 ~ +3 1000
100
10

LogSigmoid

4

LogSigmoid

5

import numpy as np
import matplotlib.pyplot as plt

def logsigmoid(x):
return np.log(1 / (1 + np.exp(-x)))

生成 x 值
x = np.linspace(-10, 10, 100)

計算 logsigmoid 函數的值
y = logsigmoid(x)

繪製 logsigmoid 函數
plt.plot(x, y, linewidth=2)
plt.title('LogSigmoid Function')
plt.xlabel('x')
plt.ylabel('logsigmoid(x)')
plt.grid(True)

設定 x 軸範圍
plt.xlim(-10, 10)

設定 y 軸範圍
plt.ylim(-1, 1)

加粗 x=0 和 y=0 線條
plt.axhline(0, color='black', linewidth=2)
plt.axvline(0, color='black', linewidth=2)

plt.show()

Tanh
• Tanh Function (Hyperbolic Tangent Function):

• It compresses the input to the range between -1 and 1, similar to the
sigmoid but with a wider output range, also facing the vanishing
gradient problem.

6

Tanh

7

import numpy as np
import matplotlib.pyplot as plt
Define the range for x values
x_values = np.linspace(-5, 5, 100)
Compute y values using tanh function
y_values = np.tanh(x_values)
Plot the tanh function
plt.plot(x_values, y_values, label='Tanh Function', color='b')
Add labels and title
plt.xlabel('x')
plt.ylabel('tanh(x)')
plt.title('Tanh Function')
Add grid
plt.grid(True)
Add legend
plt.legend()
設定 x 軸範圍
plt.xlim(-10, 10)
設定 y 軸範圍
plt.ylim(-1, 1)
加粗 x=0 和 y=0 線條
plt.axhline(0, color='black', linewidth=2)
plt.axvline(0, color='black', linewidth=2)

Show plot
plt.show()

The input values to the tanh function should also not be too
large & small; otherwise, the model may encounter training
difficulties because the values will approach 1 & -1.

Exploration Data Analysis (EDA)

8

探索式資料分析

Quickly and easily understand the characteristics of data from various
perspectives using descriptive statistics, statistical plotting, visualization,
and other techniques.

圖片來源：
https://baubimedi.medium.com/速記ai課程-統計與資料分析-四-3cf14683b98f

• Data volume:
• Target features (目標特徵):
• Noisy data/Outliers (雜訊數據/ 異常值):

• Noisy data/outliers refer to values that are observed in error, such as a person's age being recorded
as 300 years old, which is likely an erroneous observation. Outliers, on the other hand, are values
that may be correct but deviate significantly from the average.

• For a normally distributed dataset, outliers can be values that are 3 to 6 standard deviations away
from the mean. When these values exceed 5% of the dataset, we need to address them.

•Missing values:
• Qualitative features (定性特徵): Qualitative features are non-numeric data

represented in text, graphics, audio, or other non-numeric formats. We need to check if the dataset
contains qualitative features. If qualitative features are present, we'll need to use data encoding
techniques to process them.

9

Outliers processing
• The term "outliers" refers to data points in a sample that significantly deviate

from the rest of the data points; outliers are also known as "anomalies."

• Having too many outliers can introduce bias to deep learning models.

• If necessary, we need to identify and analyze these outliers for processing.

• However, not all outliers require processing, as some outliers may represent
meaningful values in practical applications.

10

11

import numpy as np
import pandas as pd

scores={
'Python':[90,50,70,300,80,60,62, 55, 76, 88, 90, 50, 70, 30, 80, 60, 62, 55, 76, 88],
'Java':[300 , 70 , 90 , 50 , 40 , 60 , 77 , 66 , 50 , 89 , 30 , 70 , 90 , 50, 40, 60, 77, 66, 50, 89],
'PHP':[33, 220, 75, 85, 82, 90, 95, 56, 68, 65, 33, 2, 75, 85, 82, 90, 95, 56, 68, 65]
}
df=pd.DataFrame (scores)
print (df.shape)

Example: Greater than or less than 3 times the standard deviation are
considered outliers.

12

Set outliers as NaN values.

13

Handling missing values

14

15

16

DataFrame.fillna(value=None,
method=None, axis=None, inplace=False,
limit=None, downcast=None)

Normalization

17

Scale data to a specified range or standardize it to a specific distribution.

• Min-Max Normalization

• Z-score Normalization: a distribution with a mean of 0 and a standard deviation of 1

from sklearn.preprocessing import MinMaxScaler, StandardScaler

Min-Max Normalization
min_max_scaler = MinMaxScaler()
normalized_data = min_max_scaler.fit_transform(data)

Z-score Normalization
standard_scaler = StandardScaler()
normalized_data = standard_scaler.fit_transform(data)

Splitting the dataset
• Split a dataset into training, validation and testing subsets

18Figure from:
https://medium.com/@rahulchavan4894/understanding-train-test-and-validation-dataset-split-in-simple-quick-terms-5a8630fe58c8

Training : Validation : Testing è 60:20:20
(Method 1)

19

Randomly sample 5 rows from the DataFrame
df.sample(n=5)

Randomly sample 10% of the rows from the DataFrame
df.sample(frac=0.1)

Randomly sample 3 rows from the DataFrame with replacement
df.sample(n=3, replace=True)

20

21

Training : Validation : Testing è 60:20:20
(Method 2)
from sklearn.model_selection import train_test_split

Assume 'X' is your feature matrix and 'y' is your target variable

First, split the dataset into temporary and test sets (80% temporary, 20% test)
X_temp, X_test, y_temp, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Then, split the temporary set into training and validation sets (75% training, 25% validation)
Since we want a 60:20:20 ratio, we'll use a ratio of 75:25 for the temporary set
X_train, X_val, y_train, y_val = train_test_split(X_temp, y_temp, test_size=0.25, random_state=42)

Now, you have three subsets: X_train, X_val, and X_test for features,
and y_train, y_val, and y_test for labels.

Exercise: Predicting the release year of a song
• The YearPredictionMSD dataset allows us to predict the release year

of songs based on audio features.
• The songs mostly consist of Western commercial tracks ranging from

1922 to 2011, with a focus on songs from around the year 2000.

22https://archive.ics.uci.edu/dataset/203/yearpredictionmsd

Code from: PyTorch深度學習入門與應用：
必備實作知識與工具一本就學會
ISBN：9786263332591

https://archive.ics.uci.edu/dataset/203/yearpredictionmsd

Exercise: Predicting the release year of a song

Increase accuracy of the prediction

Submission requirements:
1. source code (predict.py)
2. PDF documents

Explaining your strategy.
Show the outputs (before and after)

3. Upload to e-learning before 4/8 14:10

