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Computation graph:

p = x + y g = ( x + y ) ∗ z

Forward Pass: 
The forward pass refers to the process of passing input data through a neural network to obtain output 
predictions. 
During the forward pass, input data is transformed through the network's layers, resulting in the model's 
predicted outputs. The forward pass is the inference process of a neural network and does not involve 
parameter updates.

p = 4  and  z = -3  to  get  g = -12

Reference:
https://www.tutorialspoint.com/python_deep_learning/python_deep_learning_computational_graphs.htm

https://www.tutorialspoint.com/python_deep_learning/python_deep_learning_computational_graphs.htm


Backward pass (backpropagation, 反向傳播)

Backpropagation is an algorithm used to compute the gradients of the loss function with respect to the 
parameters of a neural network. 

By using backpropagation, we can calculate how the loss changes with respect to each parameter, enabling us 
to update the parameters using optimization algorithms like gradient descent to minimize the loss.



Gradient: 
A gradient is the slope or directional derivative of a function at a certain point (函數在某一點的斜
率/導數), indicating the rate of change of the function at that point. 
In deep learning, the gradient typically refers to the partial derivatives of the loss function (損失函
數對於模型參數的偏導數) with respect to the model parameters. It tells us which direction in 
parameter space leads to an increase or decrease in the loss, helping us update the parameters to 
minimize the loss.

https://en.wikipedia.org/wiki/Slope

https://en.wikipedia.org/wiki/Slope


• The loss function is a function that measures the difference or error between the predicted 
output of a model and the actual target value. 

• In supervised learning, where we have both input features and corresponding target labels, the 
loss function quantifies how well the model's predictions match the true targets. 

• The goal during training is to minimize this loss function, as a lower value indicates that the 
model is making more accurate predictions.

e.g. Mean Squared Error, MSE (最小化均方誤差)

Loss function: 

Predicted value
Actual value



Example of loss function (1/2)

Predicting housing prices: 
Suppose we have a dataset with features like the size of the house (in square feet, 
sqft) and the number of bedrooms, and our goal is to predict the price of the 
house.

y = w1 × size + w2 × number of bedrooms

where w1, and w2 are the weights of the model.

House Size (sqft) Number of 
bedrooms

Actual price Predicted price A
w1=100

w2=10,000

Predicted price B
w1=200

w2=12,000

House 1 1500 3 300,000 100*1500+10,000*3 =180,000 200*1500+12,000*3 =336,000

House 2 2000 4 400,000 100*2000+10,000*4 =240,000 200*2000+12,000*4 =448,000

House 3 1200 2 250,000 100*1200+10,000*2 =140,000 200*1200+12,000*2 =264,000

!"#! =
(180,000 − 300,000)"+(240,000 − 400,000)"+(140,000 − 250,000)"

3 = 17,366,666,666

!"## =
(336,000 − 300,000)"+(448,000 − 400,000)"+(264,000 − 250,000)"

3 = 1,265,333,333



• To find the optimal weights (w1, w2) for our linear regression model using gradient descent (梯度
下降), 

• we need to iteratively update the weights to minimize the Mean Squared Error (MSE) loss 
function.

• Here's how the gradient descent algorithm works:

Example of loss function (2/2)

1.Initialize the weights (w1 , w2 ) to some random values or zeros.
2.Calculate the gradient of the loss function with respect to each weight.
3.Update the weights in the opposite direction of the gradient to minimize the loss.
4.Repeat steps 2 and 3 until convergence (收斂) (until the change in the loss function becomes 
very small or after a fixed number of iterations).

The update rule for each weight (wi) at each iteration of gradient descent is given by:

where α is the learning rate, a hyperparameter that controls the size of the steps we take during optimization.

gradient



Predicted value

Actual value

y = w1 × size + w2 × number of bedrooms
where w1, and w2 are the weights of the model.

torch.no_grad() is utilized within the training loop when updating the weight parameters. 
We only require the updated values of the weights and not their gradients for this operation, 
using torch.no_grad() helps improve training efficiency and reduces memory consumption.

create a tensor with a shape of (1,), meaning a one-dimensional tensor 
containing a single element. This element is sampled randomly from a 
standard normal distribution. (從常態分佈（mean=0, variance=1）中
隨機取樣)

gradientDescent.py



linearRegression.py





Useful functions: torch.randn()
torch.randn(2, 3, dtype=torch.float64)
torch.randn(2, 3, device='cuda')

tensorA = torch.empty(2, 3)
torch.randn(2, 3, out=tensorA)



torch.bernoulli() Generates binary random variables (0 or 1) with a Bernoulli 
distribution.

torch.cauchy() Generates random numbers from a Cauchy distribution.

torch.exponential() Generates random numbers from an exponential distribution.

torch.geometric() Generates random numbers from a geometric distribution.

torch.log_normal() Generates random numbers from a log-normal distribution.

torch.normal() Generates random numbers from a normal distribution.

torch. randint() Generates random integers from a discrete uniform distribution. torch.randint(low=0, high=10, size=(2, 3))
生成一個形狀為(2, 3)的張量，數值
是0到9之間的隨機整數。

torch.uniform() Generates random numbers from a uniform distribution.

Useful functions:



torch.reshape()
import torch

# Input tensor.
input_tensor = torch.tensor([[1, 2], [3, 4]])

# The new shape to reshape the input tensor.
output_tensor = torch.reshape(input_tensor, (4, 1))

print("Input Tensor:")
print(input_tensor)
print("Reshaped Tensor:")
print(output_tensor)

torch.transpose()
import torch

# Input tensor.
input_tensor = torch.tensor([[1, 2], [3, 4]])

# 將輸入張量的第一個維度和第二個維度交換
output_tensor = torch.transpose(input_tensor, 0, 1)

print("Input Tensor:")
print(input_tensor)
print("Transposed Tensor:")
print(output_tensor)



torch.cat()
import torch

# Concatenates the given sequence of tensors in the 
specified dimension.
# 將指定維度上的一系列張量連接在一起
tensor1 = torch.tensor([[1, 2], [3, 4]])
tensor2 = torch.tensor([[5, 6]])

# 
result = torch.cat((tensor1, tensor2), dim=0)

print("Concatenated Tensor:")
print(result)

torch.chunk()
import torch

# Splits a tensor into a specific number of chunks 
along a given dimension.
# 將張量沿著指定維度分成特定數量的塊
tensor = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

# 將張量分成兩個塊
chunks = torch.chunk(tensor, 2, dim=0)

print("Chunks:")
for chunk in chunks:
print(chunk)



torch.split()
import torch

# 創建一個形狀為(3, 6)的張量
tensor = torch.tensor([[1, 2, 3, 4, 5, 6],[7, 
8, 9, 10, 11, 12],[13, 14, 15, 16, 17, 18]])

# 將張量沿著列方向（維度0）拆分成兩個子張量
sub_tensors = 
torch.split(tensor,split_size_or_sections=2, 
dim=0)

# 
for sub_tensor in sub_tensors:
   print(sub_tensor)

torch.gather()
import torch

# 創建一個形狀為(2, 3)的輸入張量
input_tensor = torch.tensor([[1, 2, 3],[4, 5, 6]])

# 指定要收集的索引
index = torch.tensor([[0, 2],[1, 0]])

# 
output_tensor = torch.gather(input_tensor, dim=1, 
index=index)

# 
print(output_tensor)


