Pytorch Tensor

Anaconda

https://www.anaconda.com/download

v [B Free Download | Ansconds X +

€ > C M 23 anaconda.com/download w B @

ANACONDA Platform Solutions Pricing Partners Resources Company

Anaconda Distribution

Free Download

Everything you need to get started in data science on your workstation.

@ Free distribution install
@ Thousands of the most fundamental DS, Al, and ML packages
@ Manage packages and environments from desktop application

@ Deploy across hardware and software platforms

48 Download

Get Additional Installers

né'd

conda install pytorch torchvision

B Anaconda Prompt - conda install pytorch torchvision

https://www.anaconda.com/download

I i£5 Anaconda Prompt - conda install pytorch torchvision

conda update -n bage -c defaults conc

minimize the number of p
Down ¢

ninja-
1y

i it adadiidadadadiodadatidsdadaddddsiadadadbiiodadiibododadiisdbstriadsdiodadadiiitadadaiiodotatissbataadiiiadadsiiiiadadsisd
FEREREFEEEERERERER R R ERERERE R EREEERER R EREHRERE R B ERERRER R EREREERER R ERERRER R EREREFEFREFERERER R ERE IR AR LR ERERERER R RERIREREEE
B R R
FEFEREREEERERERER R R R RER A L E R R EERER R R R R R AR LR R R ERRER R R R R R R LR R R ERRER R ERE IR R R E R ERERER R R R R AR IR AR R R RERER AR RERIRER S HE
FEFEREREREREERRFEERABEREBERAFEERFREREREREREREERHFEREFERREBRREBRFEBRFRERRREERRFEREREREFERREBEREREREFERRFREREREFEERFRERRFRERFRERERERERE
FEFEREREEERERERER R R R AR A LR R R EER AR R R R IR E R R LB E R ERR AR R R R R R R R R R ERRE R R R ERE AR R E R R R ERE AR R R R R IR AR LR R R RERER LR RERER AR HE
FEFEREREREFEEERFEEREBERABERAFRERERERERER R EREERHFEREFERREBRREBRFRBRFRRRREEREFEREREREFERRFBERERERERERRFREREFEFEERF A ERRFRERFRERERERAHE
FEREREREEERERERER R EERERERE L E R R ERRERE R R R R R AR AR LR EFERRE R ERRRERRA R R E R EHER R R B R ERERRR AR EREHEREF R R PR ERAR AR EREREREREEEHY

FERFFEFFFEFFF R R R FH R A
B I I

tall

- pyto
- torchvi

Anaconda Jupyter
Prompt Notebook Spyder

ain/win-64:: o

nfwin-64::torchvision-0. 0_p afbeb | @ el S

_m

0o Lix&xEE
[- =

I} fr

Anaconda Jupyter
Prompt Notebook Spyder

install PyTorch with GPU support on Google Colab

co & UntitledO.ipynb 7+
BR RE KRREE BA TR IR R EREEmEZE
— + &R
Q o .
BB RS 38/Ctrl+Shift+A
{x} W RS E
o) BRI ERNEEE
e EAHRTE
D MHBRETIERETFAE /Ctrl+M D TR ER AR
SHAES 38/Ctrl+H Python 3 -
F— 38/Ctrl+G
EHT—EEE i+ anen O
S L—fERHE F/ClrlShift+G O cru @ T4y (O atooceu (O viooeru QO TRU
ERRARE . _
MEEFERGE GPUIS? BEIEIMNEEET
BRFIBEBEAT
O auTes —ZEIRTE—ARERIER
O #rzEzRsE 2REXBERERHEAS
HYH 7=

’
[

2

install PyTorch with GPU support on Google Colab

(>

E:

1 !'pip install torch torchvision torchaudio

2

Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement

1 import

already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already

torch

satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:

torch in /usr/local/lib/pytt
torchvision in /usr/local/l:
torchaudio in /usr/local/lit
filelock in /usr/local/lib/g
typing-extensions in /usr/lc
sympy in /usr/local/lib/pytt
networkx in /usr/local/lib/g
jinja2 in /usr/local/lib/py1
fsspec in /usr/local/lib/py1
triton==2.1.0 in /usr/local,
numpy in /usr/local/lib/pytt
requests in /usr/local/lib/g
pillow!=8.3.%,>=5.3.0 in /us
MarkupSafe>=2.0 in /usr/loc:
charset-normalizer<4,>=2 in
idna<4,>=2.5 in /usr/local/l
urllib3<3,>=1.21.1 in /usr/]
certifi>=2017.4.17 in /usr/]
mpmath>=0.19 in /usr/local/’

2 print(torch.cuda.is_available())

True

'pip install torch torchvision torchaudio

import torch
print (torch.cuda.is available())

PyTorch Tensor

* PyTorch tensors are the fundamental data structures in PyTorch.

* They serve as powerful containers for multi-dimensional data,
enabling storage and manipulation of data of any dimensionality.

* PyTorch tensors are extensively used in deep learning and machine
learning due to their versatility and efficiency, offering features such
as automatic differentiation, GPU acceleration, and convenient APIs

for tensor operations.

e A scalaris a single number

e A vector is an array of numbers.

X1
OD 5k&E 1DjRE 2DRE ZAlEMatrix X
s =& y3al SE RS X =
Scalar Vector Matrix Tensor =
| 1 1 2 I:‘I Z:I |:3 2:' e A matrix is a 2-D array
1
L 2 | 3 4 [1 7] [5 4] _Al,l A1,2 i Al,n_
b = A A oo Ay
A = 2,1 2,2 2
_Am,l Am,2 Am,n |
e Atensoris a n-dimensional array with n > 2
Source:

https://hadrienj.github.io/posts/Deep-Learning-Book-Series-2.1-Scalars-Vectors-Matrices-and-Tensors/

https://hadrienj.github.io/posts/Deep-Learning-Book-Series-2.1-Scalars-Vectors-Matrices-and-Tensors/

Data Type
torch.float32
torch.float64
torch.float16
torch.int8
torch.int16
torch.int32
torch.int64
torch.uint8

torch.bool

Description

32-bit floating point
64-bit floating point
16-bit floating point
8-bit integer

16-bit integer

32-bit integer

64-bit integer

8-bit unsigned integer

Boolean

Example

torch.tensor([1.0])

torch.tensor([1.0], dtype=torch.float64)
torch.tensor([1.0], dtype=torch.float16)
torch.tensor([1], dtype=torch.int8)
torch.tensor([1], dtype=torch.int16)
torch.tensor([1], dtype=torch.int32)
torch.tensor([1], dtype=torch.int64)
torch.tensor([1], dtype=torch.uint8)

torch.tensor([True], dtype=torch.bool)

Example applications of PyTorch tensors

1.

Model Input and Output: In deep learning tasks, tensors are used to represent input data to the
model, output predictions, and model parameters.

For instance, in an image classification task, an image can be represented as a tensor as input to the
model, while the model's output is a tensor containing the predicted probabilities for each class.

.Loss Function Computation: During training of deep learning models, loss functions are employed

to quantify the discrepancy between the model predictions and the ground truth labels. Loss
functions typically take tensors representing the model's output predictions and the ground truth
labels as inputs.

.Gradient Computation: PyTorch implements automatic differentiation through its Autograd

mechanism, enabling automatic computation of gradients. When tensors are used in forward
propagation calculations in the model, PyTorch automatically constructs a computational graph
and computes gradients during backward propagation. Gradients are also represented as tensors
and are used to update model parameters.

.Data Processing and Transformation: In data preprocessing, feature engineering, and other data

manipulation steps, tensors are frequently used for various operations such as normalization,
standardization, dimensionality reduction, etc.

Differences between Numpy and PyTorch Tensor

1. Computation Platform:

1. Numpy: Numpy is a mathematical library based on Python, providing a multidimensional array object and a set of
functions for operating on these arrays.

2. PyTorch Tensor: PyTorch Tensor is a tensor library designed for deep learning, offering functionalities similar to
Numpy arrays and accelerated computation on GPUs.
2. Computation Graph and Automatic Differentiation:
1. Numpy: Numpy does not support computation graphs or automatic differentiation.
2. PyTorch Tensor: PyTorch Tensor supports computation graphs and automatic differentiation, making it particularly
suitable for training and optimizing deep learning models.
3. GPU Acceleration:
1. Numpy: Numpy does not directly support GPU-accelerated computation.

2. PyTorch Tensor: PyTorch Tensor can utilize GPUs for accelerated computation, thereby speeding up model training
and inference.
4. Library Ecosystem:
1. Numpy: Numpy has a rich ecosystem, including many libraries for scientific computing and data processing.

2. PyTorch Tensor: PyTorch Tensor's ecosystem is primarily focused on deep learning, providing tools and libraries for
modeling and training deep neural networks.

Differences between Numpy and PyTorch Tensor

1. Creating Arrays/Tensors:

Creating an array using Numpy
numpy np
numpy_array = np.array([1, 2, 31)

print("Numpy array:", numpy_array)

Creating a tensor using PyTorch

im torch

torch_tensor = torch.tensor([1, 2, 31)
print("PyTorch tensor:", torch_tensor)

OooNOOUT S WN B

Differences between Numpy and PyTorch Tensor

2. Element-wise Multiplication:

Element-wise multiplication with Numpy
result_np = numpy_array x*
print("Numpy array multiplied by 2:", result_np)

Element-wise multiplication with PyTorch Tensor
result_torch = torch_tensor *
print("PyTorch tensor multiplied by 2:", result_torch)

Nouu s, WN =

Differences between Numpy and PyTorch Tensor

e 3. Automatic Differentiation:

Automatic differentiation with PyTorch Tensor
X = torch.tensor([2.0], =True)

y = X %%

y.backward()

print("Gradient of y w.r.t. x:", x.grad)

YU B WIN =

Tensor Creation:

* torch.tensor(): Creates a tensor from a Python list or array.

 torch.zeros(): Creates a tensor filled with zeros.

* torch.ones(): Creates a tensor filled with ones.

import torch
x = torch.tensor ([1, 2, 3])
X

zeros tensor = torch.zeros (2,

zeros tensor

ones tensor = torch.ones (2,
ones tensor

© 1 import torch
2 x = torch.tensor([1, 2, 3])
3 X

[Z tensor(I[1, 2, 31)
[8] 1 zeros_tensor = torch.zeros(2, 3)
2 zeros_tensor
tensor([[0., 0., 0.1,
[0., 0., 0.11)
[91 1 ones_tensor = torch.ones(2, 3)
2 ones_tensor

tensor([[1., 1., 1.1,
[1., 1., 1.11)

Tensor Operations:

e torch.add(): Adds two tensors element-wise.
e torch.matmul(): Performs matrix multiplication.

* torch.sum(): Computes the sum of tensor elements.

1 result = torch.add(x, y)
2 result = torch.matmul(matrixl, matrix2)
3 total = torch.sum(x)

Math Operations:

* torch.exp(): Computes the exponential of tensor elements.
* torch.sin(): Computes the sine of tensor elements.

import torch

Create a tensor
X = torch.tensor([1.0, 2.0, 3.0])

Compute the exponential of tensor
elements

exp tensor = torch.exp (x)

print (exp tensor)

tensor([2.7183, 7.3891, 20.08551])

Math Operations:

* torch.mean(): Computes the mean of tensor elements.

import torch

Create a tensor
X = torch.tensor([[1.0, 2.0, 3.01,14.0, 5.0, 6.011)

Compute the mean of tensor elements

mean value = torch.mean (x)

. " " Tensor:
print ("Tensor:") tensor([[1., 2.
print (x) [4., 5.

print ("\nMean:", mean value.item())
o Mean: 3.5

Accessing values at specific positions: (1/5)

import torch

Create a tensor

X = torch.tensor([[1, 2, 3],
[

[

4I 5/ 6]/
T, 8, 911)

Access value at specific position
value = x[1, 2]

print ("Value at position (1, 2):",
value.item())

Tensor slicing: (2/5)

Slice a tensor

slice tensor = x[:, 1]
print ("Sliced tensor:")
print (slice tensor)

Getting/Changing tensor shape: (3/5)

Get tensor shape
shape = x.shape
print ("Tensor shape:", shape)

Reshape tensor

reshaped tensor = x.view(l, 9)
print ("Reshaped tensor:")
print (reshaped tensor)

Masking operations: (4/5)

Masking operation
mask = x > 5

masked tensor = x[mask]
print ("Masked tensor:")
print (masked tensor)

Saving/Loading tensor to file: (5/5)

Save tensor to file
torch.save (x, 'tensor.pt')
print ("Tensor saved successfully.")

Load tensor from file
loaded tensor = torch.load('tensor.pt')

print ("Tensor loaded from file:")
print (loaded tensor)

