
Pytorch Tensor

Anaconda
https://www.anaconda.com/download

conda install pytorch torchvision

https://www.anaconda.com/download

install PyTorch with GPU support on Google Colab

install PyTorch with GPU support on Google Colab

!pip install torch torchvision torchaudio

import torch
print(torch.cuda.is_available())

PyTorch Tensor
• PyTorch tensors are the fundamental data structures in PyTorch.
• They serve as powerful containers for multi-dimensional data,

enabling storage and manipulation of data of any dimensionality.
• PyTorch tensors are extensively used in deep learning and machine

learning due to their versatility and efficiency, offering features such
as automatic differentiation, GPU acceleration, and convenient APIs
for tensor operations.

Source:
https://hadrienj.github.io/posts/Deep-Learning-Book-Series-2.1-Scalars-Vectors-Matrices-and-Tensors/

0D 張量
純量

1D張量
向量

2D張量
矩陣

多個Matrix包
裝進陣列

https://hadrienj.github.io/posts/Deep-Learning-Book-Series-2.1-Scalars-Vectors-Matrices-and-Tensors/

Example applications of PyTorch tensors
1. Model Input and Output: In deep learning tasks, tensors are used to represent input data to the

model, output predictions, and model parameters.
For instance, in an image classification task, an image can be represented as a tensor as input to the
model, while the model's output is a tensor containing the predicted probabilities for each class.

2. Loss Function Computation: During training of deep learning models, loss functions are employed
to quantify the discrepancy between the model predictions and the ground truth labels. Loss
functions typically take tensors representing the model's output predictions and the ground truth
labels as inputs.

3. Gradient Computation: PyTorch implements automatic differentiation through its Autograd
mechanism, enabling automatic computation of gradients. When tensors are used in forward
propagation calculations in the model, PyTorch automatically constructs a computational graph
and computes gradients during backward propagation. Gradients are also represented as tensors
and are used to update model parameters.

4. Data Processing and Transformation: In data preprocessing, feature engineering, and other data
manipulation steps, tensors are frequently used for various operations such as normalization,
standardization, dimensionality reduction, etc.

Differences between Numpy and PyTorch Tensor

1. Computation Platform:
1. Numpy: Numpy is a mathematical library based on Python, providing a multidimensional array object and a set of

functions for operating on these arrays.
2. PyTorch Tensor: PyTorch Tensor is a tensor library designed for deep learning, offering functionalities similar to

Numpy arrays and accelerated computation on GPUs.

2. Computation Graph and Automatic Differentiation:
1. Numpy: Numpy does not support computation graphs or automatic differentiation.
2. PyTorch Tensor: PyTorch Tensor supports computation graphs and automatic differentiation, making it particularly

suitable for training and optimizing deep learning models.

3. GPU Acceleration:
1. Numpy: Numpy does not directly support GPU-accelerated computation.
2. PyTorch Tensor: PyTorch Tensor can utilize GPUs for accelerated computation, thereby speeding up model training

and inference.

4. Library Ecosystem:
1. Numpy: Numpy has a rich ecosystem, including many libraries for scientific computing and data processing.
2. PyTorch Tensor: PyTorch Tensor's ecosystem is primarily focused on deep learning, providing tools and libraries for

modeling and training deep neural networks.

1. Creating Arrays/Tensors:

Differences between Numpy and PyTorch Tensor

2. Element-wise Multiplication:
•

Differences between Numpy and PyTorch Tensor

• 3. Automatic Differentiation:

Differences between Numpy and PyTorch Tensor

Tensor Creation:

• torch.tensor(): Creates a tensor from a Python list or array.
• torch.zeros(): Creates a tensor filled with zeros.
• torch.ones(): Creates a tensor filled with ones.
•

import torch
x = torch.tensor([1, 2, 3])
x

zeros_tensor = torch.zeros(2, 3)
zeros_tensor

ones_tensor = torch.ones(2, 3)
ones_tensor

Tensor Operations:
• torch.add(): Adds two tensors element-wise.
• torch.matmul(): Performs matrix multiplication.
• torch.sum(): Computes the sum of tensor elements.
•

Math Operations:
• torch.exp(): Computes the exponential of tensor elements.
• torch.sin(): Computes the sine of tensor elements.

import torch

Create a tensor
x = torch.tensor([1.0, 2.0, 3.0])

Compute the exponential of tensor
elements
exp_tensor = torch.exp(x)

print(exp_tensor)

Math Operations:
• torch.mean(): Computes the mean of tensor elements.

import torch

Create a tensor
x = torch.tensor([[1.0, 2.0, 3.0],[4.0, 5.0, 6.0]])

Compute the mean of tensor elements
mean_value = torch.mean(x)

print("Tensor:")
print(x)
print("\nMean:", mean_value.item())

Accessing values at specific positions: (1/5)
import torch

Create a tensor
x = torch.tensor([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])

Access value at specific position
value = x[1, 2]
print("Value at position (1, 2):",
value.item())

Tensor slicing: (2/5)

Slice a tensor
slice_tensor = x[:, 1]
print("Sliced tensor:")
print(slice_tensor)

Getting/Changing tensor shape: (3/5)
Get tensor shape
shape = x.shape
print("Tensor shape:", shape)

Reshape tensor
reshaped_tensor = x.view(1, 9)
print("Reshaped tensor:")
print(reshaped_tensor)

Masking operations: (4/5)
Masking operation
mask = x > 5
masked_tensor = x[mask]
print("Masked tensor:")
print(masked_tensor)

Saving/Loading tensor to file: (5/5)
Save tensor to file
torch.save(x, 'tensor.pt')
print("Tensor saved successfully.")

Load tensor from file
loaded_tensor = torch.load('tensor.pt')
print("Tensor loaded from file:")
print(loaded_tensor)

